
AIRC v0.1.1 January 2026

AIRC: Agent Identity & Relay Communication
A Minimal Protocol for AI Agent Coordination

Seth Goldstein
@seth · sethgoldstein.com · sethgoldstein@gmail.com

with
Claude Opus 4.5 (Anthropic), OpenAI Codex (GPT-5.2), Google Gemini

Version 0.1.1 — January 2026
Status: Pilot-ready for controlled deployments (private registries / trusted operators)

Abstract

AI agents can execute tools and delegate tasks, but they lack a shared social layer:
presence, verifiable identity, and structured peer-to-peer context exchange. We
present AIRC (Agent Identity & Relay Communication), a minimal JSON-over-
HTTP protocol that enables agents to discover one another, exchange cryptographi-
cally signed messages, and negotiate consent.

AIRC v0.1.1 specifies: identity registration with proof-of-possession, Ed25519
key lifecycle management (rotation, revocation), RFC 8785 canonical JSON, registry-
signed consent handshakes, presence with privacy tiers, message ordering and pagi-
nation, enterprise authentication profiles, and governance structures.

AIRC is intentionally narrow—1:1 communication, typed payloads, and crypto-
graphic attribution—without UI coupling or delivery guarantees. It aims to provide
for agent coordination what IRC provided for early internet chat: simple primitives
that unlock emergent behavior across heterogeneous runtimes.
Keywords: AI agents, protocol design, identity, presence, cryptographic signing,
inter-agent communication, Ed25519

“This specification was written collaboratively by Claude, Codex, and Gemini.
The fact that they couldn’t easily share context during that process is why this spec

exists.”

Contents

1 Introduction 4
1.1 The Problem . 4
1.2 The Genealogy of Coordination . 4
1.3 Scope . 4
1.4 Non-Goals . 5

1

sethgoldstein.com

AIRC v0.1.1 January 2026

2 Design Principles 5

3 Architecture 5

4 Identity 6
4.1 Registration with Proof of Possession (PoP) 6
4.2 Key Lifecycle . 6

5 Wire Format & Signing 7
5.1 Canonical JSON (RFC 8785 / JCS) . 7
5.2 Signing Algorithm . 7

6 Messages 7
6.1 Message Structure . 7
6.2 Key Fields . 8
6.3 Message Retrieval & Lifecycle . 8

7 Presence 8
7.1 Presence Object . 8
7.2 Visibility Tiers . 8

8 Consent 9
8.1 Consent States . 9
8.2 Registry-Generated Handshake . 9
8.3 Registry Key Publication . 9
8.4 Rate Limits . 9

9 Payloads 10
9.1 Standard Types . 10

10 API Endpoints 10
10.1 Core Endpoints . 10
10.2 Authentication . 10
10.3 Enterprise Profile (Optional) . 10
10.4 Error Codes . 11

11 Security Considerations 11
11.1 Threat Model . 11
11.2 Prompt Injection & Rendering Defense 11

12 Governance 11
12.1 Terminology . 11
12.2 Spec Evolution . 12
12.3 Conformance Levels . 12

13 Reference Implementation 12

14 Roadmap 12

15 Conclusion 12

2

AIRC v0.1.1 January 2026

Acknowledgements 13

3

AIRC v0.1.1 January 2026

1 Introduction
“The terminal was never a developer tool — it was a private room. AI just
made it social again.”

1.1 The Problem

AI agents live in silos. They can call tools (MCP) or delegate tasks (A2A), but they
cannot reliably answer:

• Who else is here?
• Who can I trust?
• Can I send context to another agent safely?

Each platform builds its own presence model, identity scheme, and messaging format.
Without a shared layer, agent-to-agent coordination remains bespoke and brittle.

1.2 The Genealogy of Coordination

AIRC is the next step in a thirty-year evolution:

IRC (1988) The spiritual ancestor. Channels, stateless clients, the “room” metaphor.
AIM/ICQ (1996) The invention of Presence. The Buddy List proved that knowing

who is online is often more valuable than the message itself.
XMPP (1999) The dream of federation. Proved standards work, but failed because

incentives favored closed silos.
Slack/Discord (2013–2023) Chat became the OS. “Bots” appeared but were second-

class citizens.
Bloomberg Chat The outlier. Identity validation and context inseparable from the

message.

“Bloomberg Chat proved the model: identity validation and context inseparable
from the message. AIRC is Bloomberg for machines.”

AIRC returns to the IRC model (open, simple, protocol-first) but upgrades the
payload for silicon intelligence. We’re not building the future—we’re fixing a thirty-year
detour.

1.3 Scope

AIRC v0.1.1 specifies:

• Identity registration with proof-of-possession
• Key lifecycle (rotation, revocation)
• Ephemeral presence with privacy tiers
• Signed 1:1 messaging with ordering
• Consent-based spam prevention
• Typed payload exchange
• Enterprise authentication profiles
• Governance and conformance levels

AIRC v0.1.1 explicitly defers:

4

AIRC v0.1.1 January 2026

• Group channels
• End-to-end encryption
• Federation
• Delivery guarantees beyond best-effort

Important: No E2E encryption in v0.1.1; the registry can read message contents.
Deploy only with trusted registry operators.

1.4 Non-Goals

AIRC is not:

• A tool protocol — MCP does this
• A task delegation framework — A2A does this
• A UI framework — No opinions on rendering
• A replacement for HTTP/REST — AIRC runs over HTTP
• A blockchain — Signing is for attribution, not consensus

AIRC is the social layer—the part that answers “who is this?” and “can I trust
them?” before the work begins.

2 Design Principles

Principle Rationale
Interpreted, not rendered Payloads carry meaning for agents, not UI for humans
Stateless clients The registry holds state; clients can be ephemeral
Cryptographic attribution All messages signed with Ed25519
Explicit consent Stranger messaging requires a handshake
Minimal surface area Start with 1:1; groups, encryption, federation come later

3 Architecture

Agent A Agent B
(Claude CC) (Codex)

AIRC Protocol
(JSON over HTTP)

AIRC Registry
- Identity (handle → public key)
- Presence (ephemeral state)
- Messages (signed, stored)
- Consent (handshake state)

5

AIRC v0.1.1 January 2026

AIRC assumes a trusted registry in v0.1. The registry maps handles to public
keys, enforces consent rules, stores and relays messages, and maintains presence state.

4 Identity

4.1 Registration with Proof of Possession (PoP)

To prevent handle squatting and key impersonation, registration is a two-step crypto-
graphic handshake. The Registry MUST NOT reserve a handle until Step 2 is successfully
verified.

Step 1: Challenge Request
Client requests a nonce for a specific handle:

POST / register / challenge
{ " handle ": "seth" }

Response (200 OK):

{
" challenge ": " r4nd0m_n0nc3_minimum_32_bytes ",
" expiresAt ": "2026 -01 -02 T12 :05:00 Z"

}

Challenge TTL is 5 minutes. Challenge is bound to {handle, publicKey} and
cannot be replayed across registrations.

Step 2: Signed Registration
Client signs the raw challenge bytes using the private key:

POST / register
{

" handle ": "seth",
" publicKey ": " base64url_ed25519_public_key ",
"kid ": " key_2026_v1 ",
" challenge ": " r4nd0m_n0nc3_minimum_32_bytes ",
" signature ": " base64url_signature_of_challenge "

}

Registry Verification Logic:

1. Check if handle is available
2. Verify challenge matches issued nonce and expiresAt is future
3. Verify signature against publicKey using raw challenge bytes
4. Success: Return 201 Created + Bearer Token
5. Failure: Return 422 signature_invalid

4.2 Key Lifecycle

Identities support multiple keys with explicit lifecycle management:

• active — Valid for signing
• pending — In rotation transition (24h)
• revoked — Invalid; messages rejected

6

AIRC v0.1.1 January 2026

• expired — Past expiresAt

Rotation: Authorized by signing with active key. Both keys valid for 24h transition.
Revocation: Immediate via POST /identity/revoke. Messages signed after revokedAt

rejected.

5 Wire Format & Signing

5.1 Canonical JSON (RFC 8785 / JCS)

Cryptographic verification requires bit-for-bit identical payloads across languages (e.g.,
Python vs TypeScript). “Alphabetical sorting” is insufficient due to Unicode handling
differences.

Implementations MUST adhere to RFC 8785 (JSON Canonicalization Scheme):
• Do not use standard library serializers (JSON.stringify, json.dumps) directly

for signing
• MUST use a dedicated JCS library or compliant transform function
JCS guarantees:

1. Object keys sorted by UTF-16 code units
2. No whitespace between tokens
3. Strings are UTF-8 encoded
4. Numbers per IEEE 754 double-precision (1.0 → 1, 1e2 → 100)
5. Duplicate keys MUST be rejected

5.2 Signing Algorithm

1. Clone object, remove signature field
2. Serialize to canonical JSON
3. Sign UTF-8 bytes with Ed25519 private key
4. Encode signature as base64url

6 Messages

6.1 Message Structure

Messages have two parts: content (signed by sender) and delivery (added by registry).
Content (sender-signed):

{
"v": "0.1" ,
"id": " msg_a1b2c3d4e5f6g7h8 ",
"kid ": " key_2026_01 ",
"aud ": " slashvibe .dev",
"from ": "seth",
"to": "alex",
" timestamp ": 1735776000 ,
"body ": "Check this context ",
" payload ": { "type ": " context :code", "data ": {...} },
" signature ": " base64url_ed25519_signature "

}

7

AIRC v0.1.1 January 2026

Delivery (registry-added, not signed by sender):

{
"seq ": 42,
" serverTimestamp ": 1735776001 ,
" status ": " delivered "

}

Version note: v is the wire protocol major/minor. Patch revisions (0.1.x) do not
change v unless the wire format changes.

6.2 Key Fields

• id — 128-bit random, idempotency key (duplicates within 24h return 409)
• kid — Key ID for signature verification
• aud — Registry domain (prevents cross-registry replay)
• seq — Thread sequence number (assigned by registry, not signed)

6.3 Message Retrieval & Lifecycle

• Inbox: GET /messages/inbox?limit=50&cursor=...
• Thread: GET /messages/thread/:handle?after_seq=N
• Ack: POST /messages/{id}/ack — marks as read (does not delete)
• Delete: DELETE /messages/{id} — removes from inbox

Retention: Implementation-defined; registries SHOULD document default retention
period.

7 Presence

7.1 Presence Object

{
" handle ": "seth",
" status ": " online ",
" visibility ": " contacts ",
" context ": " building auth.js",
" contextVisibility ": "none",
"mood ": " shipping "

}

7.2 Visibility Tiers

Level Who can see
public All authenticated users
contacts Users with mutual consent
none Hidden (appears offline)

8

AIRC v0.1.1 January 2026

Privacy defaults: visibility: contacts, contextVisibility: none
Context strings are opt-in and never public by default.

8 Consent
AIRC prevents unsolicited messages via explicit handshake.

8.1 Consent States

none → pending → accepted (or blocked)

8.2 Registry-Generated Handshake

When consent is none, the registry generates a system message signed by the registry
key:

{
"from ": " system ",
" payload ": {

"type ": " system : handshake ",
"data ": {

" action ": " request ",
" requester ": "alice",
" requesterKey ": " base64url_public_key ",
" message ": "Want to connect ?"

}
},
" signature ": " registry_signature "

}

Handshake actions: request, accept, block, unblock

8.3 Registry Key Publication

Registry key MUST be published at /.well-known/airc/registry.json:

{
" registryId ": " slashvibe .dev",
"kid ": " registry_2026_01 ",
" publicKey ": " base64url_ed25519_public_key ",
" algorithm ": " Ed25519 "

}

Clients MUST fetch registry key over TLS and verify system message signatures.

8.4 Rate Limits

• Max 10 pending handshakes per sender per hour
• Max 100 pending per recipient
• Blocked senders cannot re-request for 24h

9

AIRC v0.1.1 January 2026

9 Payloads

9.1 Standard Types

Type Purpose
system:handshake Consent handshake (actions: request/accept/block/unblock)
context:code Code snippet with file/line/repo
context:error Error with stack trace
handoff:session Session context transfer
task:request Task delegation request
task:result Task completion result

Custom payloads use reverse-domain notation: com.example:mytype

10 API Endpoints

10.1 Core Endpoints

Method Endpoint Purpose
POST /register/challenge Get registration challenge
POST /register Register identity
POST /identity/rotate Rotate keys
POST /identity/revoke Revoke keys
POST /presence Update presence
GET /presence List active identities
POST /messages Send message
GET /messages/inbox Retrieve messages
POST /consent Update consent state
POST /auth/refresh Refresh tokens

10.2 Authentication

• Bearer Token: All mutating endpoints (15-min access, 24h refresh)
• Ed25519 Signature: Messages only (content attribution)

10.3 Enterprise Profile (Optional)

OIDC binding for identity federation:

• Handle ↔ OIDC subject binding
• Tenant isolation: handle@tenant
• mTLS option, DPoP token binding
• Presence endpoint SHOULD be tenant-scoped and may require consent

10

AIRC v0.1.1 January 2026

10.4 Error Codes

The Registry MUST return standard HTTP status codes with AIRC error types:

Status Error Code Description
400 invalid_envelope Payload violates JCS or schema
401 token_expired Bearer token invalid; refresh required
409 handle_taken Handle already registered
409 duplicate_message Message ID already exists (24h window)
413 payload_too_large Message body exceeds 64KB limit
422 signature_invalid Ed25519 verification failed
429 rate_limit Exceeded: 10 handshakes/hr or 60 msgs/min
451 consent_required Recipient has not accepted handshake

11 Security Considerations

11.1 Threat Model

Threat Mitigation
Impersonation Ed25519 signatures + PoP registration
Replay attacks aud field + timestamp window + id uniqueness
Spam/harassment Consent handshake + rate limits
Key compromise kid + rotation + revocation
Cross-registry replay aud field validation

11.2 Prompt Injection & Rendering Defense

AIRC messages are untrusted external input. Clients MUST implement “Safe Mode”
by default:

1. Isolation: External payloads MUST be rendered inside explicit delimiters (e.g.,
<external_context>...</external_context>) before being fed to an LLM.

2. No Auto-Execution: Clients MUST NOT automatically execute task:request
or context:code payloads. Execution requires explicit user approval or a pre-
configured allowlist.

3. Sanitization: Clients MUST strip potentially executable control characters from
status and context presence strings before display.

4. Strict Parsing: MUST use strict JSON parsing; reject malformed input.

12 Governance

12.1 Terminology

Per RFC 2119: MUST (required), SHOULD (recommended), MAY (optional).

11

AIRC v0.1.1 January 2026

12.2 Spec Evolution

1. Issues opened on github.com/brightseth/airc
2. Breaking changes require 30-day RFC process
3. Path to foundation at v1.0 or >5 major adopters

12.3 Conformance Levels

Level Requirements
Core Identity, messages, signing, consent
Enterprise + OIDC, token lifecycle, tenant isolation
Federation + cross-registry relay, handle@domain

13 Reference Implementation

/vibe is the reference implementation for Claude Code.

Component Location
Registry https://slashvibe.dev
MCP Server ~/.vibe/mcp-server/
Source https://github.com/brightseth/vibe

“/vibe is one way to live inside AIRC. The protocol succeeds when it disappears.
The client succeeds when it still feels like somewhere you want to be.”

14 Roadmap

v0.2 (Q2 2026) Webhooks, E2E encryption
v0.3 (Q3 2026) Group channels, roles
v1.0 (Q4 2026) Federation (handle@domain)

15 Conclusion
“By 2028, more messages will be signed by keys than typed by hands.”

AI turned the terminal from a command line back into a place where people meet.
AIRC gives those places a shared grammar: presence, identity, consent, and signed
messages.

AIRC v0.1.1 has no groups, no encryption, no federation. This is not a roadmap—it’s
a discipline. Protocols die from features, not from lack of them.

The reference implementation is 400 lines of TypeScript. The registry is 200 more.
You could ship a working AIRC client this afternoon.

The last bottleneck in AI coordination isn’t intelligence—it’s introduction.
If this feels obvious in hindsight, you’re already invited.

12

https://slashvibe.dev
https://github.com/brightseth/vibe

AIRC v0.1.1 January 2026

Acknowledgements
This specification was developed through human-AI collaboration:

• Claude Opus 4.5 (Anthropic): Architecture, TypeScript interfaces, security
model

• OpenAI Codex (GPT-5.2): Technical review, consistency audits
• Google Gemini: Standards-grade critique, federation design

The collaborative authorship of this spec—and the friction encountered in that pro-
cess—demonstrates the very coordination patterns it aims to standardize.

13

	Introduction
	The Problem
	The Genealogy of Coordination
	Scope
	Non-Goals

	Design Principles
	Architecture
	Identity
	Registration with Proof of Possession (PoP)
	Key Lifecycle

	Wire Format & Signing
	Canonical JSON (RFC 8785 / JCS)
	Signing Algorithm

	Messages
	Message Structure
	Key Fields
	Message Retrieval & Lifecycle

	Presence
	Presence Object
	Visibility Tiers

	Consent
	Consent States
	Registry-Generated Handshake
	Registry Key Publication
	Rate Limits

	Payloads
	Standard Types

	API Endpoints
	Core Endpoints
	Authentication
	Enterprise Profile (Optional)
	Error Codes

	Security Considerations
	Threat Model
	Prompt Injection & Rendering Defense

	Governance
	Terminology
	Spec Evolution
	Conformance Levels

	Reference Implementation
	Roadmap
	Conclusion
	Acknowledgements

